

Arbeitsmaterialien für Lehrkräfte

Kreative Ideen und Konzepte inkl. fertig ausgearbeiteter Materialien und Kopiervorlagen für einen lehrplangemäßen und innovativen Unterricht

Thema: Naturwissenschaften Sekundarstufe I, Ausgabe: 6

Titel: Zellatmung - chemisch betrachtet (17 S.)

Produkthinweis zur »Kreativen Ideenbörse Sekundarstufe«

Dieser Beitrag ist Teil einer Print-Ausgabe aus der »Kreativen Ideenbörse Sekundarstufe« der Mediengruppe Oberfranken – Fachverlage GmbH & Co. KG*. Den Verweis auf die jeweilige Originalquelle finden Sie in der Fußzeile des Beitrags.

Alle Beiträge dieser Ausgabe finden Sie hier.

Seit über 15 Jahren entwickeln erfahrene Pädagoginnen und Pädagogen kreative Ideen und Konzepte inkl. sofort einsetzbarer Unterrichtsverläufe und Materialien für verschiedene Reihen der Ideenbörse.

Informationen zu den Print-Ausgaben finden Sie hier.

* Ausgaben bis zum Jahr 2015 erschienen bei OLZOG Verlag GmbH, München

Beitrag bestellen

- ► Klicken Sie auf die Schaltfläche **Dokument bestellen** am oberen Seitenrand.
- Alternativ finden Sie eine Volltextsuche unter www.eDidact.de/sekundarstufe.

Piktogramme

In den Beiträgen werden – je nach Fachbereich und Thema – unterschiedliche Piktogramme verwendet. Eine Übersicht der verwendeten Piktogramme finden Sie hier.

Nutzungsbedingungen

Die Arbeitsmaterialien dürfen nur persönlich für Ihre eigenen Zwecke genutzt und nicht an Dritte weitergegeben bzw. Dritten zugänglich gemacht werden. Sie sind berechtigt, für Ihren eigenen Bedarf Fotokopien in Klassensatzstärke zu ziehen bzw. Ausdrucke zu erstellen. Jede gewerbliche Weitergabe oder Veröffentlichung der Arbeitsmaterialien ist unzulässig.

Die vollständigen Nutzungsbedingungen finden Sie hier.

Haben Sie noch Fragen? Gerne hilft Ihnen unser Kundenservice weiter:

	Chemie	Stoffe verändern sich	
Zellatmung – chemisc		tmung – chemisch betrachtet	2.2.2

Vorüberlegungen

Lernziele:

- Die Schüler erhalten begleitend (oder vertiefend/ergänzend) zum Biologiethema "Atmung" einen tieferen Einblick in die dazugehörigen chemischen Vorgänge.
- Sie erfahren, dass Citronensäure von ganz verschiedenen Organismen synthetisiert werden kann und auch im eigenen Körper eine zentrale Stellung einnimmt.
- Sie lernen über den Citronensäurezyklus wesentliche Merkmale der Atmung lebender Organismen kennen.
- Sie vertiefen ihre Kenntnisse über den stofflichen Aufbau lebender Zellen aus Kohlenhydraten, Fetten und Eiweißen.
- Sie erkennen, dass keine normale Knallgasreaktion in den Zellen ablaufen kann.
- Sie lernen einen Modellversuch zur Zellatmung kennen und übertragen ihn auf die Atmungskette.
- Sie erkennen den Vorteil der "Politik der kleinen Schritte", den die Natur u. a. im Zusammenhang mit der Atmungskette beschreitet.

Anmerkungen zum Thema:

Diese Unterrichtseinheit widmet sich einem der erstaunlichsten Phänomene im Bereich lebender Organismen – der Atmungskette. Um die komplexen Vorgänge besser verständlich zu machen, wird auf eine zu "biochemische" Betrachtung der Prozesse verzichtet. Formeln und Gleichungen werden nur soweit angewendet, wie sie bekannt und für künftige Einheiten relevant sind.

Die Anwendung eines Modellversuches soll die nicht sichtbaren Vorgänge für die Schüler "ans Tageslicht" holen. Zudem bieten sie, in dieser sonst gerne "trockenen" Unterrichtseinheit, Abwechslung im Unterrichtsgeschehen.

Die Übertragung des Modellversuches in die Realität stellt, wenn sie gelingt, eine große Transferleistung dar.

Die Einheit ist angesiedelt im Bereich "Organische Chemie – Verbindungen mit funktionellen Gruppen". Je nach Vorwissen der Schüler können diese Prozesse jedoch auch in der Biologie an geeigneter Stelle vorgestellt werden. Dann sollten die chemischen Begrifflichkeiten jedoch auf das Bekannte reduziert werden.

"Die Atmungskette oder Atmungskettenphosphorylierung, auch oxidative Phosphorylierung genannt, findet bei höher entwickelten Lebewesen in den Mitochondrien statt. Sie besteht aus den Enzym-Komplexen I bis V und den Elektronenüberträgern Ubichinon, die in die innere Mitochondrienmembran eingelagert sind

Netto läuft dabei die exergonische Knallgasreaktion (Oxidation von Wasserstoff zu Wasser) ab. Tatsächlich werden die durch NADH, FMNH₂ und FADH₂ angelieferten Reduktionsäquivalente mit Hilfe einer Reihe von Redoxvorgängen, die an der inneren Mitochondrienmembran ablaufen, dazu genutzt, aus ADP und Phosphat die universelle Energiewährung der Zelle, ATP, zu synthetisieren. Diese Reduktionsäquivalente entstammen dem Citratzyklus, dem Abbau der Fettsäuren und der Glycolyse. (...) Die Elektronentransportkette ist eine Reihe hintereinander geschalteter Redox-Moleküle, die in der Lage sind, Elektronen aufzunehmen bzw. abzugeben. Über diese Kette werden Elektronen weitergegeben, sie fallen sozusagen in Stufen bergab, wobei die einzelnen Redox-Moleküle ein zunehmend niedriges Energieniveau haben. Die Elektronentransportkette bezeichnet man auch als Redoxsystem."

Aus: http://www.wikipedia.de

L	Stoffe verändern sich	Chemie
2.2.2	Zellatmung – chemisch betra	chtet

Vorüberlegungen

Vorbereitung/Benötigte Materialien:

- Kopieren der Arbeitsblätter im Klassensatz (M 3 und M 6)
- Kopieren der Folien (vgl. M 1, M 2 und M 9)
- Material für Citronensäure und Brausepulver bereitstellen:
 - Citronensäure (puris = reinst; aus der Apotheke bzw. Chemikalienfachhandlung), Haushaltszucker, Natriumcarbonat (Soda – aus Lebensmittelhandel, Drogeriemarkt); ggf. frische Zitronen (grün bis hellgelb); Petrischalen, evtl. Wattestäbchen ("Ohropax" als Tupfer)
- Evtl. Bereithalten von Biologie- und Erdkundebüchern (Nachschlagewerke für Recherchen)
- Material für "Knalldosenversuch" vorbereiten (vgl. M 5)
- Modellversuch "blau-farblos" vorbereiten (vgl. M 8)

Vernetzungsmöglichkeiten mit anderen Fächern:

Diese Einheit sollte in Absprache mit dem Biologielehrer gehalten werden. So sind Synergien beim Lernen dieses doch recht komplexen Themas erzielbar.

Um die Prozesse einigermaßen durchdringen zu können, ist eine vorherige Besprechung organischer Verbindungen unabdingbar.

Angaben zur Unterrichtsmethode:

- "Fragend-entwicklendes"-Verfahren
- Demonstrationsversuche (Lehrerversuche)
- Arbeiten mit Modellen

Sicherheitshinweise:

Beim entsprechenden Versuch eingearbeitet (betrifft: Wasserstoff)!

Unterrichtsverlauf:

1. Schritt: Citronensäure und Brausepulver

2. Schritt: Verwendung von Citronensäure im Alltag
3. Schritt: Herkunft und Bedeutung der Citronensäure
4. Schritt: Bedeutung der Citronensäure für die Atmung

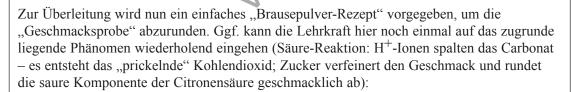
5. Schritt: Lehrerdemonstration – die Knalldose
 6. Schritt: Diskussion zum Zellstoffwechsel
 7. Schritt: Modellversuch "Kleine Schritte"

8. Schritt: Übertragung des Modellversuches auf die Atmungskette

Varianten und Alternativen:

Stoffe verändern sich Chemie Zellatmung – chemisch betrachtet

Unterrichtsverlauf


1. Schritt: Citronensäure und Brausepulver


Als Einstieg in diese Unterrichtssequenz, die nach Möglichkeit parallel zu einer entsprechenden Einheit der Biologielehrkraft liegt, wird die Substanz "Citronensäure" vorgestellt.

• "In diesen Schälchen, die ich jetzt durchgehen lasse, befindet sich die Substanz , Citronensäure', die bei der Atmung eine wichtige Rolle spielt. Bevor wir uns mit der Atmung auseinandersetzen, möchte ich euch die Möglichkeit geben, diesen Stoff zunächst näher kennenzulernen. Ihr könnt eine Geschmacksprobe entnehmen und probieren."

Schnell werden die Schüler die Substanz identifizieren, da der Stoff in vielen Lebensmitteln vorkommt und so für viele leicht erkennbar wird.

Wie der Name erkennen lässt, ist diese Substanz auch in der "Zitrone", vor allem in unreifen Früchten (diese enthalten ca. 8 % Citronensäure), enthalten. Da es sich hier nicht um eine "heimische Pflanze" handelt, kann es ggf. sinnvoll sein, eine Abbildung der Pflanze (und/oder reife Früchte aus dem Supermarkt) auf der Folie "Die Zitrone (Citrus lemon)" aufzulegen (vgl. M 1).

Wir können dieses mithilfe der Citronensäure recht leicht selbst herstellen: Vermischt je zwei Einheiten Zucker und Citronensäure mit einer Einheit Soda (Natriumcarbonat). Wenn ihr nun Wasser dazugebt, erhaltet ihr eine gut schmeckende und sehr schön prickelnde selbstgemachte Brause".

Neben diesem "Showversuch", der die Schüler immer wieder motiviert, könnte auch das Geschmacksorgan "Zunge" mit diesem Stoff näher erkundet werden:

• "Tupft euch eine Citronensäurelösung (oder die Brausemischung) mit einem Wattestäbchen an unterschiedlichen Stellen der Zunge auf – das geht am besten, wenn ihr euch gegenseitig helft. Wo wird der "saure Geschmack" am deutlichsten wahrgenommen?"

Immer wieder sind Schüler verblüfft, dass nicht die gesamte Zungenoberfläche "sauer" erkennt. Die stärkste Wahrnehmung hat man, wenn man mit der Lösung den vorderen Zungenrand berührt.

2. Schritt: Verwendung von Citronensäure im Alltag

Im zweiten Stundenabschnitt kann dann abschließend noch auf die Verwendung bzw. den Einsatz von Citronensäure allgemein eingegangen werden.

Hierzu werden Schulbuch (Biologie, Erdkunde), Bestimmungsbücher bzw. das Internet zur Recherche eingesetzt. Die Ergebnisse werden gemeinsam an der Tafel gesammelt und später ins Heft übernommen:

